
Week 03 – problem set

Nonlinear Optics for Quantum Technologies

March 6th, 2025

1 The anharmonic (nonlinear) Lorentz oscillator model

This exercise is to be done at home before Thursday’s lecture.

We will extend the Lorentz oscillator model to account for nonlinear response. Thus, we assume
that the electrons bound to the nucleus are subjected to an anharmonic potential. We assume that
the electric field is polarized along a principal axis x, causing a displacement of the oscillator along
the x−direction. Around the equilibrium position x = 0, the potential can be expanded as a Taylor
series: 1
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The prefactors are introduced so that the force exerted on the electrons is:

F (x) = −dV (x)

dx
= −mω2

0x−mβ2x2 −mβ3x3 (2)

1.1 Non-centrosymmetric medium

In a crystal lacking an inversion center, the lowest order nonlinearity is usually the cubic term in the
potential (quadratic term in the restoring force). We remind the electron’s equation of motion in this
case:

mẍ+mω2
0x(t) +mβ2x(t)2 +mγ0ẋ = qE(t) (3)

For small displacements x, we can consider the potential to be weakly anharmonic, i.e., |β2|x� ω2
0. We

will therefore solve the problem using a classical perturbation approach. We introduce a perturbation
parameter 2 λ into the solution ansatz for x(t),

x(t) = x1(t) + λx2(t)
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where x1 is the known exact solution of the linear problem for λ = 0 and x2 is the nonlinear correction.

If we assume a drive at frequency ω, we can write the unperturbed solution x1(t) = 1
2 (X1(ω) exp(−iωt) + c.c.)

where c.c. denotes the complex conjugate and

X1(ω) =
ε0
Nq

χ(1)(ω)E

is the complex amplitude related to the drive by the susceptibility χ(1) derived in Lecture 02. (We
note N the volumic density of oscillators and q their individual charge).

i. Insert the ansatz for x(t) and V (x) into the differential equation (3) and find the equation satisfied
by x2(t) by keeping only the terms of order 1 in λ.

1If the material has a center of symmetry (inversion symmetry) the coefficient β2 vanishes and β3 is the lowest order
perturbation

2λ → 1 turns the anharmonicity; λ → 0 turns it off
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ii. What new frequencies appear due to the term x1(t)
2?

iii. To solve for x2(t), use the ansatz:

x2(t) = X2(ω = 0) +
1

2
(X2(2ω) exp(−i2ωt) + c.c.) (4)

and find the complex amplitudes X2(ω = 0) and X2(2ω) by collecting terms oscillating at the
same frequency.

iv. Write down the expression of the nonlinear polarization P (2)(t) associated with the nonlinear
correction x2(t) and show that

a. the term corresponding to optical rectification (induced static field) and noted χ(2)(0;ω,−ω),
is proportional to |χ(1)|2

b. the term corresponding to second harmonic generation, noted χ(2)(2ω;ω, ω), is proportional to

χ(1)(2ω) ·
(
χ(1)(ω)

)2
The universal nature of these proportionality relations was first experimentally noticed by Robert
C. Miller in Appl. Phys. Lett. 5, 17–19 (1964).

1.2 (optional) Centrosymmetric medium

In a medium whose point group contains a center of inversion, such as silicon, diamond, glass, liquids,
etc., we will see that the coefficient β2 vanishes and β3 is the lowest order perturbation to the harmonic
potential. Apply the method above to this case and identify all the frequencies contained in the
nonlinear polarization P (3)(t)
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2 Wave propagation in anisotropic media

This exercise will be treated in class on Thursday.

Second-order optical nonlinearities are mostly used in anisotropic materials such as birefringent
crystals since they allow phase matching despite phase velocity dispersion. We consider the linear
response of an anisotropic, homogeneous, and lossless dielectric medium. We chose the axes Ox, Oy,
and Oz to coincide with the principal optics axes of the crystal so that the permittivity ε is a diagonal
tensor.

Di = εiiEi where Di = ~D · ~ui ; i ∈ {x, y, z} (5)

1. Derive the propagation equation from Maxwell equations in a homogeneous, lossless dielectric
medium (real permittivity tensor) without magnetic response (µ = 1) for linearly polarised plane
waves of the form ~E = êE0 exp(i~k · ~r − ωt) (polarization unit vector ê and wave vector ~k).

2. Deduce which polarizations can propagate unaltered within the crystal (the normal modes) and
derive the dispersion relations |~k(ω)| characterizing these polarizations, in the following cases:

(a) in an isotropic medium for which:

ε = εxx = εyy = εzz

(b) in a uniaxial crystal with the extraordinary axis along z, for which:

εxx = εyy = ε⊥ and εzz = ε‖.

For the second case, you may follow these steps

i. restrict the study to wavevectors that are in the Oy,Oz plane (since x and y directions are
equivalent)

ii. rewrite the propagation equation for ~k = ky êy+kz êz = k cos θ êy+k sin θ êz and an arbitrary
polarization, and project it on the three basis vectors to obtain 3 different equations

iii. consider the first equation (projected onto Ox) for waves polarized along x (called “ordinary”
waves); solve it to obtain the corresponding dispersion for such waves

iv. consider the other two equations for a polarisation orthogonal to êx and obtain a single 4th

order polynomial equation in k

v. make the ersatz k = ω
c nθ and show that this last equation is solved for

1
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+
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Express no and ne as a function of the permittivity tensor components.

3. Demonstrate that the energy of the extraordinary wave does not propagate along ~k, but with an
angle γ from ~k. This angle γ is called the birefringent or walk-off angle. Show that γ is equal
to the angle between ~D and ~E. Derive an expression for γ.

Reminder of some vectorial identities:
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A more complete description of light propagation in anisotropic crystals may be found in the
following books:

• G.R. Fowles Introduction to modern optics Chapter 6.7

• M. Born, E. Wolf Principles of Optics Chapter XV

• B.E.A. Saleh, M.C. Teich Fundamentals of Photonics, Chapter 6.3

• A. Yariv, P. Yeh Optical Waves in Crystals, Chapter 4

• L.D. Landau, E.M. Lifshitz Electrodynamics of Continuous Media, Chapter XI
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